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Landau-de Gennes theory of the core structure of 
a screw dislocation in smectic A liquid crystals 

by S. KRALJ*I and T. J. SLUCKIN 
Faculty of Mathematical Studies, University of Southampton, 

Southampton SO17 lBJ, England 

(Received 9 February 1994; in final form 26 September 1994; accepted 10 November 1994) 

We present details of calculations of the core structure of a screw dislocation in a smectic A liquid 
crystal, using the phenomenological Landau4e Gennes free energy functional. The order 
parameter frustration created by topological constraints far from the dislocation core is resolved 
in one of three qualitatively different ways. The three types of dislocation core solution are the 
DT (double twist), CL (classical), and BP (broken polar symmetry) solutions, respectively. 
The stability requirements for these structures are discussed, as a function of temperature, smectic 
elastic properties, and coupling between smectic and nematic order. The effect of possible 
inhomogeneity between left- and right-handed conformers is also examined. 

1. Introduction 
The study of defects in solid and liquid state physics 

made major progress when it was realized that a coherent 
classification of such defects could be made using 
homotopic ideas borrowed from topology [ 1,2]. Never- 
theless, it is clear that although topological constraints 
have a major influence on defect dynamics and even statics 
in condensed matter systems, there remains interesting 
physics on smaller length scales, which is not completely 
determined by these topological conditions. In this paper, 
we discuss one such problem: the core of a screw 
dislocation in a smectic A liquid crystal. 

We set the scene for this study by pointing out that liquid 
crystals are particularly appropriate vehicles for the study 
of defects. Their fluidity allows the physical relaxation 
implicit in topological discussions. The mesoscopic nature 
of liquid crystals provides a wealth of order parameters 
which provide the basic preconditions for defected 
physical systems. The equilibrium order parameter 
manifold is often embedded in a higher order manifold. 
This permits a 'microscopic' topology differing from that 
defined by the hydrodynamic scale, and thus introduces 
naturally a microscopic classification of defect structure 
[3]. Unlike in many solids, there is also the possibility of 
a decoupling between orientational and translational 
degrees of freedom. 

It is helpful to recall some of the salient relevant features 
of the smectic A (SA) liquid crystalline phase in equilib- 
rium [4]. It may be regarded as consisting of a stack of 
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parallel two-dimensional nematic (N) layers; the average 
distance between layers is comparable to the molecular 
length. Within each layer there is no translational order. 
The nematic director n(r) is parallel to the layer normal, 
and thus strongly resists the twist and bend deformations 
which occur in nematic hydrodynamics. Mathe atically 
the absence of twist and bend is equivalent to the statement 
that the layer thickness is constant, or equivalently 
V x n = O .  

The layered SA structure is commonly represented by a 
complex density wave $(r). de Gennes [5] was the first to 
point out that the free energy functional constructed from 
the symmetry-allowed combination of order parameters 
closely resembles the Landau-Ginzburg hamiltonian used 
to discuss the norma1 state-super conductor transformation 
in low temperature metals. In this analogy, the smectic 
order parameter $ plays the role of the Cooper-pair density 
and the nematic director field n plays the role of the 
magnetic vector potential A. This has particular relevance, 
because a superconductor placed in a magnetic field 
B = V X A may go through a type Z-type ZZ transform- 
ation, in which a lattice of line defects in the Cooper pair 
density vortices-is created. Only within the vortices can 
the magnetic field B penetrate. This lattice is often known 
as the Abrikosov lattice and the phase as the Abrikosov 
phase [6]. 

Renn and Lubensky [7,8] realized that the SA supercon- 
ductor analogy was also relevant in this context. The SA 
analogue of the magnetic field B is the de Gennes 
molecular field h = V X n. This quantity is non-zero in a 
chiral nematic (N*), and there is a term in the free energy 
coupling to h even if the N* phase is replaced by SA. Renn 
and Lubensky realized that there was an SA analogy to the 
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888 S. Kralj and T. J. Sluckin 

Abrikosov phase, in which now the twist (i.e. regions in 
which V X n # 0) is confined to a lattice of screw 
dislocations. 

This is the twist grain boundary (TGB), or SX phase. 
It consists of a regular array of parallel 'twist grain' 
boundaries, each of which is made up of a set of regularly 
spaced parallel screw dislocations. Between the grain 
boundaries the molecular configuration is essentially 
identical to that in the non-chiral SA phase. The screw 
dislocation axes rotate from one grain boundary to the next 
in a helical fashion. In this way it is possible for smectic 
layering and spontaneous chiral-induced nematic twist to 
coexist. Recent experiments support this picture [9,10]. 

The basic building block of the TGB phase, however, 
is the screw dislocation, and this remains incompletely 
understood. Day ef al. [ I  I], used the analogy between the 
SA phase and superconductors. They show that the director 
field close to the dislocation axis can be obtained by 
directly mapping the magnetic vortex problem onto the SA 
problem. Their results are valid in the continuum limit. 
Loginov and Terentjev [12] have also studied screw 
dislocation core structure. They draw an analogy with 
dislocations in solids [ 131 and obtain the core structure in 
a continuum-like approximation in which n is constrained 
to be everywhere locally perpendicular to the layers. 

Each of these approximations has a range of validity. 
Nevertheless, it is important to take account of the 
possibility, not only of varying n, but also of varying 
nematic and smectic order parameters in the dislocation 
region. The purpose of this paper is to show that, in fact, 
the structure of the screw dislocation core in the SA phase 
can be considerably more complex than its analogue in the 
theory of superconductivity. We minimize the de Gennes 
free energy functional; this takes into account, in a 
covariant way, variations in the nematic and smectic order 
parameters. 

The paper is organized as follows. In 3 2 we present the 
model free energy density and corresponding bulk phase 
diagram. In $ 3  we derive three qualitatively different 
screw dislocation core structures, and in $ 4 discuss their 
stability. In 0 5 we examine the case in which the nematic 
phase is composed of a mixture of conformers with 
opposite molecular chirality. This affects both the order 
parameter structure and the conformer concentration 
profile in the dislocation region. Finally in $ 6 we present 
a brief discussion of our results. Some technical details 
have been relegated to the appendices. 

A preliminary account of these results has already been 
presented [ 141. 

2. Model 
2.1. Free energy 

A screw dislocation is but one example of an inhomo- 
geneous structure embedded in a SA systcm. In our 

approach, an inhomogeneity is completely described by (i) 
the complex order parameter $(r); (ii) the nematic director 
field n(r); (iii) the nematic orientational order parameter 
S(r). In principle one could imagine more complicated 
descriptions which would take into account, for example, 
different Fourier harmonics of the density p(r), or 
biaxiality in the (tensor) nematic order parameter S(r). 
Our choice of relevant order parameters (apart from 
being conventional) is the minimal set which allows 
sensible discussion of defect structure in smectics 

The quantity +(r) models the layered structure of the SA 
phase. It is related to the first harmonic of the density 
deviation dp(r) from a homogeneous distribution. In a 
uniform smectic 

~ 5 1 .  

The degree of layer ordering is measured by the scalar 
order parameter q; the phase 4 determines the smectic 
layer position; q = 2n/don and do is the equilibrium layer 
spacing. 

The free energy densityflr) is expressed in terms of the 
relevant order parameters as the sum of nematic (Nj and 
smectic (S) local and non-local terms 

.f(r) =fF +fY +f? +fYfcoup,, 
( T - T & ) S *  s2 s4 _ -  b - + c -  

4 '  2 3 
fp=a" 

k3 

2 
+ - ( n x V ~ n ) ~  

Although this free energy functional has been used 
elsewhere, it is worth discussing in slightly more detail the 
physical meaning of the terms therein. 

The quantity fF describes the contribution from the 
nematic order parameter alone, under the assumption of a 
non-varying uniaxial order parameter. It is the usual 
Landau-de Gennes order parameter expansion in this 
context, with phenomenological expansion constants ao, 
b, c, T &  obtained from experiment. 
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The screw dislocation in smectic A liquid crystals 889 

The quantityfy describes contributions from changes 
in the nematic order. These are of two types: (i) the usual 
Frank elastic energy contributions, in which the director 
changes, and (ii) contributions which describe changes in 
the degree of nematic order. We make the hypothesis that 
the Frank constants Ki = kiS2, where i = 1,2,3 correspond 
to splay, twist and bend constants, respectively. We also 
introduce two constants kll and k l ,  which describe changes 
in S ( p ) ,  respectively parallel to and perpendicular to the 
director. These constants influence the orientation of n(r) 
at the isotropic-nematic interface. In this free energy 
expression there are thus five independent elastic 
constants, and this is what is permitted by symmetry. 
Of course a more detailed tensor discussion [16,17] does 
suggest relationships between these constants; the tensor 
Landau-de Gennes theory allows only two independent 
lowest order bulk elastic constants. In the calculations 
presented in this paper ki ( i  = 1,2,3,  I, 11) are temperature 
independent, although this is not an essential feature of the 
model. 

There are similar terms fp and fy corresponding to 
'pure smectic' contributions. The complex order par- 
ameter $(r) can only enter at quadratic order. The 
parameters ao,P, y ,  TgN describe an 'ideal' smectic free 
energy uninfluenced by the propinquity of a nematic 
phase. In fact, there is also a coupling temf,,up~ involving 
both smectic and nematic order parameters; this term plays 
an important role in determining the nature of the N-SA 
phase transition [4,18]. 

All smectic elastic effects are described by the parame- 
ters yI and yll i n f y ;  the latter is associated with layer 
compression, and the former measures the cost of tilting 
the director away from the layer normal. Thus the 
condition y L  + 0 corresponds to an instability of the SA 
phase with respect to Sc fluctuations. The layer thickness 
d =2n/q0 is enforced, at least in ideal systems, by the 
phase of the complex smectic order parameter $(r). 

Finally we emphasize that we are using this free energy 
functional in a purely mean-field context. Lubensky et al. 
[19] have used relevant parts of this functional as a 
Landau-Ginzburg-Wilson functional in order to describe 
critical phenomena close to smectic onset in the nematic 
phase. In particular, this leads to divergences of K2 and K3 
at a second order N-SA transition. However, inside the 
srnectic phase, finite values of K2 and K3 are nevertheless 
consistent with the non-existence of hydrodynamic twist 
and bend deformations. 

Equations ( 1 )  contain a large number of variables. 
It therefore proves convenient to carry out some scaling 
transformations. We define scaled nematic and smectic 
order parameters s = Sc/b and E = q d ( y / b ) .  We measure 
position in terms of a dimensionless coordinate x = qor. In 
this language, the layer thickness is just 2n; i.e. phase angle 
and length in an undistorted system coincide. 

We now obtain a dimensionless free energy density 

+ C2gF + C3gY + gcoup1. (2)  
The detailed structure of the individual terms in g(x) 

will be given in the next sub-section. The three coupling 
constants C1, C,, C, set the relative energy scales for 
nematic inhomogeneities, smectic bulk order and smectic 
inhomogeneities as compared to nematic bulk order. 
The coupling constants are defined by 

C1 = klq$db2; C2 = ( j l ~ ) ~ / ( y b ~ ) ~ ;  

c3 = pC3q;r,4(yp4>. ( 3 )  
The ratios of these constants reveal characteristic lengths 
involved in our problem as shown in Q 2.3. 

2.2. Bulk phase diagram 
All simple theories of the I-N-SA phase diagram have 

the following features [20-223. At low coupling between 
the nematic and smectic order parameters, the progression 
of phases with decreasing temperature is I, N, SA: the I-N 
phase transition is first order (as determined by symmetry 
considerations), and the X-Y-like order parameter permits 
the N = SA transition to be continuous. As the coupling is 
increased, the transition temperature TSN increases, and 
eventually there is a tricritical point, beyond which the 
transition is first order. As coupling is further increased, 
TSN increases further until it reaches TNI at a triple point. 
Beyond this coupling, the nematic phase is pre-empted by 
a direct isotropic-smectic phase transition at T ~ I .  In this 
section we briefly describe quantitively how this scenario 
develops within the scope of the Landau-de Gennes model 
that we consider. This bulk phase diagram is crucial in 
order to interpret the regions of validity of various 
dislocation core structures. 

In the absence of deformations the dimensionless free 
energy takes the form 

(4) g = &?bulk = g F  f c@'Ygcoupl, 

where 
s2 s3 s4 

2 3 4  
gty" = ( t  - t") - - - + -, 

E4 €6 
gbm = (rt - t,)P + - + -, 

2 3  

gcoup1 = - DS-2. (4 C )  

In these equations t = ( T / ~ ' N I ) ( C U O / ~ * }  is the scaled tem- 
perature, 

r = yaob2/(caoP)2(T&/Ts*N), ts = yadP2, and tn = cadb2. 

In the D = 0 weak coupling limit, the N-SA transition 
is continuous at t =  tslr, and the I-N transition is 
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liquid crystal constants. In figure 1 (b), the order parameter 
variation as a function of temperature is shown for 
different values of D. At D = 1-1, both transitions are first 
order; by D = 1.5 the N phase is no longer stable. 

We note that an experimental realization of changing D 
involves changing the aliphatic chain length in liquid 
crystalline molecules [4]. Thoen et al. [18], obtained an 
experimental phase diagram analogous to figure 1 (a), in 
which the coupling D is increased by increasing n in the 
homologous series of nCB compounds. 

t - t ,  
(b) 

Figure 1 .  Bulk properties of the model studied for C2 = 1 ,  
tn = ts = 50, r = 1.03. (a) The bulk phase diagram as 
function of D and t .  Full lines: first order I/N, N/SA and 
VN coexistence lines; dashed line: second order N/SA 
coexistence line. The circle denotes the tricritical point 
(Dcrit. r ~ ) .  (b) Nematic and smectic order parameter 
dependence on t for different values of D .  Full line: D = 0; 
dashed line: D = I .1; dash-dotted line: D = 1.5. For 
D = 1 . 1  and D = 1.5, s ( f )  curves coincide for f - fn > 0.07. 

discontinuous at t = tn + 3. The tricritical point occurs at 
D = D c"t, and (scaled) temperature rui. These quantities 
are determined self-consistently by the relations 

= d(2C2H), (5 4 
H =  -ttui+tn+sd2, (5 6) 

(5 c )  (rtwi - tsl2 = 2s2&/c2, 

and 

Sb = ( V [ r  - 4 ( t ~  - tn>1)/2. ( 5 d )  

Analytic evaluation of the position of the triple point is 
not possible, but it does show up in explicit numerical 
calculations. In figure 1 (a),  we show a phase diagram as 
a function of D and t, calculated for typical values of the 

2.3. Screw dislocation: parametrization and free energy 
In an inhomogeneous phase, g(x)  includes the g r  and 

g p  terms. These terms are necessarily non-zero in the 
presence of the screw dislocation. It is convenient to 
introduce dimensionless cylindrical coordinates (p ,  cp, z),  
which define x. The smectic phase is expressible as 

#(x) = z + u(x) + Mcp, (6) 
where the winding number M is an integer measuring the 
strength of the dislocation, and u(x)  is the layer displace- 
ment field. The presence of the dislocation is now 
indicated by the condition that far from the dislocation the 
smectic layers are undistorted, i.e. u(p + m)+O. In this 
limit, other quantities take the values they would take in 
an undistorted smectic; we shall characterize these with a 
subscript b (bulk) (for example, &b,Sb). A more detailed 
discussion of the large scale structure of screw dislocations 
can be found in textbooks about defects in condensed 
matter physics [ 1,2]. 

The director field n(x) can now be described by local 
spherical polar angles 6, ct 

(7) 
shown in figure 2. 

This parametrization is then used to define the free 
energy. We confine our interest to dislocations in which 
the cylindrical symmetry is preserved; this seems a 

n(x) = e,, cos ct sin 6 + ecp sin ct sin 6 + e, cos 6, 

P 
Figure 2. Definition of angles c( and 6 describing a local 

director field orientation. 
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The screw dislocation in smectic A liquid crystals 89 1 

the smectic coherence length tl = d[RC3/(2C2)]/&b the reasonable assumption and certainly saves much addi- 
tional mathematical complexity. We now obtain 

where 
H g y P ) = 2  1 ~ sin26 ( P 2  (cos2 a+ a2 sin2 a cos2 6 

+ u3 sin2 a sin2 6) + (E) sin? 

(3 x (cos2 a + u2 sin2 a) + 
x (cos2 CI cos2 6 + u2 sin2 a 

sin (219) sin (2a) 
2 X (a2- 1) 

(;;) sin (2; sin2 6 
( -  1 +a2cos2l9 + - _ _ _ ~  

2 

+ a3 sin2 6) + (2) sin2 fi(sin2 a 

+ u2 cos2 a cos2 6 + a3 sin2 6 cos2 a) 

H g ) ( p )  = t (all sin2 6 cos2 a + ul (cos’ 6 

+ sin2 6 sin2 a)), 

M 2  + cos2 8) + 7 (sin2 6 sin2 a 
P 

+ R(sin2 6 cos’ ct + cos2 6)) + 1 

+ cos2 6 + R sin2 6 - 2 

M 

P 
+ - sin 6 sin a + cos 6 

- 

nematic twist ( i  = 2 )  and bend ( i  = 3) coherence lengths 
= d(C1ui) and the nematic twist and bend penetration 

depths I.; = (;/(d[Rc3]&b). The coherence lengths define a 
length scale over which a relevant perturbed order 
disappears. The penetration depths define the length scale 
on which twist and bend can penetrate into the SA phase. 

The minimization of g ( p )  gives rise to five coupled 
differential equations in the variables s ( p ) ,  ~ ( p ) ,  a@), 6 ( p )  
and u(r). Details of these equations (and some further 
minor technical details concerning their solution) are 
relegated to Appendix A. We have solved these equations 
using standard relaxation techniques [23], and the result- 
ing solutions are discussed in the next section. 

(8 a )  

(8 b, 

3. Screw dislocation core structure 
3.1. Asymptotic behaviour 

We first study the asymptotic behaviour of the core 
structure. This should depend only on the elastic energy 
in the harmonic approximation; i.e. it only depends on 
smectic elastic constants. Far from the core, on length 
scales p4c1, n X a = 0 ,  where a is a unit vector 
perpendicular to the smectic layers [24];  the molecules are 
perpendicular to the smectic layers. In this limit the 
smectic phase factor is 4b(P) = +b(P +- ~0 ) = z + M p ,  
yielding &, = tan- ’ ( M / P )  and = ab(P + 03 ) = n/2. 
This result follows also from the continuum-like approach 
of Loginov and Terentjev [12]. The bulk values of the 
nematic order parameter s b  and the smectic order par- 
ameter &b are simply determined by minimizing the 
relevant bulk free energy contributions, gbulk, defined in 
equation (4), with respect to .s and E. 

At the dislocation core axis, the topological require- 
ments are incompatible with bulk smectic layering. Much 
further discussion of the structure must necessarily 
concern the way in which the frustration imposed by the 
winding number M is resolved. However departures of 
the smectic and nematic order parameters from their 
bulk values are not so dependent. We find that 

(“) 

(8 d )  

6s = s b  - s(P) o: P - 6  and h& = &b - & ( P )  cc P -  ‘. 
3.2. ClussiJcation of difSerent core structures 

The existence of a non-zero winding numberMcompels 
the inner structure of the dislocation core to involve some 
departures of the order parameters from their bulk values, 
and indeed some regions where the order parameters 
disappear. The frustration seems capable of being resolved 
in one of three qualitatively different ways. We have 
labelled them, descriptively, as the ‘double twist’ (DT), 
the ‘classical’ (CL), and the ‘broken polar symmetry’ (BP) 

) :. ) M .  
P 

+ - sin2 6 sin (2a) + - sin (26) sin a , (8 e )  

H L2’(p) = sin2 6 cos2a + R(sin2 6 sin2 a + cos2 S), (8f) 

and where R = y I / y ~ ~  and ai = ki/kl { z = 2,  3,  11, I 1. 

involved in this problem. The most important of these are: 

solutions. In the DT and CL solutions a ( p )  = n/2 and 
There are several important characteristic lengths u(p)  = 0. Equivalently, the director at a point does not tip 

out of a plane perpendicular to the radius from the 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
1
3
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



892 S. Kralj and T. J. Sluckin 

c z  Cl 

f 2 BP 

Figure 3. ( a )  A smectic layer surrounding a screw dislocation 
of strength M =  1 for the case u ( x )  = 0. x = pcoscp, 
y = p sin cp, 4(x) = Mcp = M tan - (y lx) .  (h) Schematic 
presentation of n in the DT, CL and BP solution in the (p ,  z )  
plane. The nail presentation is used. The length of a nail is 
proportional to the length of the n projection in the (p, z )  
plane. Nails with ‘head’ correspond to n with a finite 
component in the eq direction. The dot indicates the case 
n(le,. Dashed nails present asymptotic orientation of n in the 
limit p - > m, where nl/e,. 

dislocation core to that point, and the layers do not distort 
from their asymptotic form (though, of course, they do 
reduce in intensity). In the BP solution all five variables 
appearing in the variational equations depend on position. 
A schematic picture ofthe screw dislocation core structure 
is shown in figure 3. In figure 3 (a )  the layer structure is 
presented in the case when u(p)  = 0 (DT or CL). The 
solutions differ most strongly in the nematic director n 
pattern within the core as depicted in figure 3 (b). 

One interesting feature of the results in the core region 
appears to be independent of the details of the core 
structure. The defect topology forces the smectic order 
parameter E to be zero along the defect line itself (i.e. at 
p=O).  We find that e ( p ) m p M ;  thus E ( P )  in this region 
seems to depend on the homotopic classification of the 
defect, but to be independent of the detailed way in which 
the consequent frustration is resolved. 

In the ensuing sub-sections we describe in detail results 
for the core structures of the three types of defect. We first 
concentrate on the case D = 0. The free energy of equation 
( 1 )  admits an enormous parameter space, and in order to 
make reasonable progress it is necessary to restrict the set 
of values over which studies are made. We have chosen 
the following values of the model scaled parameters in 
equations (4) and (8), which are broadly speaking 
appropriate to an experimental SA phase 

a2 = a3 = all = U L  = 10; c1 = 100; c., = 1 ;  c1= 100; 

R = l ; t , = t s = 5 0 ;  r=1.03. 

These calculations are carried out at scaled temperature 
t = tn - 1 .  In Appendix B we discuss the criteria by which 
these parameters have been chosen. 

3.3. The DT core structure 
In this solution the core is singular only in the smectic 

(and not in the nematic) order parameter. Such a solution 
is sometimes known as a semi-defect [251. The system 
avoids a smectic layer discontinuity along the core axis by 
a local transition into the nematic phase. The director n(p)  
remains continuous and well-defined. For p 4 5 the 
nematic director tends to point along the dislocation axis, 
and it is easy to show that in this region 6 ( p )  p.  

As p is decreased from m ,  n first twists one way 
(19 increase if M > 0), before turning and twisting the other 
way, so that, at p = 0, n is parallel to its direction at p = m .  

It is for this reason that this structure is known as a ‘double 
twist’ solution. In figure 4 (a), we plot the dependence of 
S(p), for M = 1,2, showing the maximum in S(p), and 
compare this solution to the elastic harmonic solution 
which follows from prescribing n//a. 

In the D = 0 case, the weak coupling between smectic 
and nematic order has the effect that the nematic order 
parameter s is only weakly dependent on p. This 
dependence is shown in figure 4 (b). Nevertheless, solu- 
tions with this basic structure exist for any reasonable 
choice of the liquid crystal material constant values. 

Further interesting information can be obtained from 
examining the free energy density profile. This quantity 
should be examined with caution, because g ( p )  is a 
non-local quantity; some parts of it can be transformed into 
surface contributions using the divergence theorem. 
Nevertheless, some insight into the relative distribution of 
the elastic forces can be obtained. In figure 5 we plot 
A&) = g - gh, for M = I ,  2. The major contribution 
comes from g y ;  this is despite the rather small actual 
change in the smectic order parameter. For M > 1, there is 
also a noticeable contribution from g y  in the region 
p < tL. This is because the E p M  dependence increas- 
ingly expels smectic order from a central core, and hence 
suppresses the relative importance of changes in this order 
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Figure 4. Core structure of the DT solution. Full Line: M = 1; 
dashed line: M = 2.  CI = 100, ai = 10 (i = 2,3, I, 1 1 ) ;  
Cz= 1, C3= 100, R =  1;  t,=t, =50, r =  1.03, 
t - tn = - 1. (a )  Dependence of 6 ( p )  compared to the 
continuum solution &(p) (described by the dotted line). 
(b) A scaled order parameter ~ i ,  i = ( E ,  s), as function of p. 
0, = d & b ,  D = dsb. Differences between o,(p) for M = 1 and 
M = 2 are negligible. 

parameter. This effect is demonstrated in the inset to 
figure 5 ;  the main elastic effect close to the core now comes 
from the twist deformation. 

3.4. The CL core structures 
The core structure of the CL (classical) solution is a 'full 

defect' [25]; both nematic and smectic order parameters 
are singular along the core axis. In all cases, close to the 
core axis, n lies in the ep direction. This fact forces a 
singularity in the nematic order parameter. Thus the 
dislocation core essentially consists of isotropic fluid, 
surrounded by an annuloid of nematic, in turn surrounded 
by bulk smectic phase. The nematic defect is a wedge 
(and not a twist) defect of order 1. 

We call this structure classical because the classical 
prediction for 6 = tan- ' (Mlp) .  In this context the classi- 
cal solution is the solution in the asymptotic region of large 
p as calculated by continuum theory. This leads to 19 = 71/2 
at p = 0; in this case n(p + 0) points in the e, direction. 

In the CL solution, the nematic director n tends to be 
perpendicular to the smectic layers; its behaviour is 
reminiscent of the elastic continuum solution. The nematic 
core is smaller than in the DT case, apparently because this 
structure is more consistent with the smectic layers. The 
smectic order can therefore persist closer to the core 
region. It is possible to derive qualitative results for the 
radii pk of the isotropic and p: of the nematic core regions. 
For the choice of parameters discussed in 0 3.2 above, we 
find p:/cl = 0.3M2'3 and p; = 0.3M. This is broadly in 
agreement with the more accurate numerical results, so 
long as a l ,  all < 10. An interesting feature of our results is 
that p: 0: l / d & b .  This has the effect that close to the N-SA 
transition for D < &it (i.e. when the transition is continu- 
ous), p g  diverges. 

In order to obtain stable CL solutions for M =  1 and 
M = 2, we have found it necessary to consider rather large 
values of a3 = K ~ K I  = 30. In fact, the existence of a CL 
solution demands a favourable combination of a number 
of circumstances. We postpone this discussion until 5 4. 

Figures 6 and 7 reveal structural details of the CL core 
structure for M = 1 and M =  2. In figure6(a) we plot 
6 = 6(p). The angle 6 monotonically decreases from 
6(0) = 7d2 towards 6( m) = 0 in a fashion very similar to 
that predicted by the continuum solution. In the inset to 
figure 6(a)  we show departures of 6(p )  from the 
continuum solution &(p)  = tan - ' ( ~ / p ) .  In the core 
region the deviations extend up to - 8 per cent for the 
chosen set of parameter values. The corresponding 
smectic and nematic order parameter behaviour is plotted 

0.5 

As 
0 - 4  

0 . 3  

0 . 2  

0.1 

0 

P / E l  
Figure 5. The free energy density plot Ag(p)  = g(p)  - gb for 

the DT solution. Full line: A4 = 1 ; dashed line: M = 2.  In the 
inset we show the corresponding A g F ( p )  = g F ( p )  - &. 
Values of parameters are as in figure 4. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
1
3
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



894 

-_  

S. Kralj and T. J. Sluckin 

I I 

f f i  

1 

0 .) 8 

0 .. 6 

0.4 
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Figure 6. Core structure of the CL solution. Full line: M = 1;  
dashed line: M = 2. Values of parameters are as in figure 4, 
except u7 = 30. (a )  6 ( p )  dependence. Inset: the ratio 
6(pl&,(p) describing departures from the continuum 
approach. ( h )  A scaled order parameter ot, i = (c ,  s), as a 
function of p .  oc = deb, 0 = = slsh. 

in figure 6 (b) .  At the dislocation axis, necessarily s(0) = 0 
and ~ ( 0 )  = 0. Some further information can be seen in 
figure 7. where the free energy density profile 
dg(p)  = g ( p )  ~ g h  is shown. By contrast with the DT 
solution, the major contribution comes from the nematic 
part ol' the free energy. The Frank elastic energy is 
dominated by the bend contribution. As in the DT solution 
the ggO"(p) dependence is qualitatively different for M = 1 
and M > I due to the E p M  dependence of the smectic 
order parameter close to the dislocation axis. This is 
demonstrated in the inset to figure 7. 

3 .5 .  The BP core structure 
In the BP solution both nematic and smectic compo- 

nents are singular along the core axis. The nematic director 
field emerges radially from the dislocation axis and 

P /SL 

P I L  
Figure 7. The free energy density plot Ag(p)  = g(p) - g b  of the 

CL solution. Full line: M = 1 ; dashed line: M = 2. Inset: 
A g y ( p )  = g?(p) - gb. Values of parameters are as in 
figure 4. 

approaches its bulk value in a splay-like way. This causes 
the smectic layers to adopt qualitatively different struc- 
tures compared to the DT and CL solution; the layers 
orient perpendicular to the axis close to the defect origin. 
The layers can approach this orientation in one of two 
ways; the layers can tip either up or down. In this sense the 
polar or up-down symmetry of the defect is broken. For 
each solution u(p), there is an equivalent &(p)  = - u(p). 
Because of this property we call this solution broken polar 
symmetry. 

In the BP solution all variational parameters of our 
model exhibit spatial variation. This is shown in figure 8 
for M = 1. The nematic director field evolves from the 
radial configuration n(0) = ep at p = 0 into n( x )Ila - e: far 
from the dislocation axis. The corresponding angle i9(p) 

8 0 -  I 
i 
I 
I 
I 

60 
I 
I 
I 
I 

4 0  .; 
I 
I 
I 

2 0  

a. 

Figure 8 .  Core structure ofthe BP solution. Full line: & = -9(p); 
dashed line: c( = ~ ( p ) .  Inset. uL 5patial dependence, 
I = (s, t, u). Full line: r ~ , / & b ,  dashed line; c5 = s/q,, 
dash-dotted line; cru = u.  Values of parameters are as in 
figure 4, except u2 = 1 ,  u3 = 30. 
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895 The screw dislocation in smectic A liquid crystals 

decreases from 6(0) = 7d2 towards 6( M) = 0, and 
a(0) = 0 towards a( 03) = 7d2. The ‘escape’ of smectic 
layers at p = 0 is demonstrated via u(p) in the inset to 
figure 8 together with the s(p)  and ~ ( p )  spatial dependence. 
Because of the full defect character of the CL core 
structure, both order parameters drop to zero at p = 0. 

The BP solution can be obtained only for large 
anisotropy of a2 and a3 ratios, i.e. ~ 2 4 ~ 3 .  In our 
calculation we set a2 = 1, u3 = 30. With increased a2 or 
decreased a3 value, the region corresponding to a radial n 
distribution rapidly shrinks, ruling out the escape of 
smectic layers. In the case shown in figure 8, the BP 
structure and DT structure resemble each other in the range 
p / i ~  > 0-2. If u3 is increased further, the BP solution 
becomes more reminiscent of the CL solution. In the next 
section we discuss that circumstances under which this 
structure could be stabilized. 

4. Stability and existence of core structures 
4.1. General consideration 

In this sub-section we discuss the existence and stability 
of different core structures. 

4.1.1. Existence 
The DT structure seems to exist for any reasonable set 

of parameters. It is more difficult to find the CL solution. 
Our intuitive expectation was that its existence is 
permitted if the nematic bend coherence length &, the 
smectic coherence length t L  and the bend penetration 
length A3 are comparable. This situation allows the 
relatively cheap large bend deformation field which exists 
in this case in the core region. In the core region, the 
tendency of n to be parallel to the layer normal a is 
weakened. However, our calculations seem to show that 
the situation is more complex than this. Indeed we do not 
at this stage understand all the relevant mechanisms. 

To obtain the CL solution, we had to choose relatively 
large values of R = y I / y ~ ~  = 1 and a3 = K3/K1 = 30. A large 
value of yI tends to orient n along a and that is indeed 
consistent with the CL director pattern. The condition 
a3 S 1 increases the bend penetration length A3.  If these 
conditions are not met in our solutions we obtain a 
structure which we call the undeveloped CL solution. 
In this solution, the director field is reminiscent of the DT 
solution, but abruptly reorients along erp at the dislocation 
axis. However, this solution is stabilized by the CL 
solution boundary condition constraint n(0) = eV. Because 
there is no physical mechanism responsible for the abrupt 
director reorientation close to p = 0 in the undeveloped CL 
solution, we believe that this solution does not correspond 
to a free energy local minimum. We find that under specific 
circumstances, the CL solution continuously evolves into 
the undeveloped CL solution. This was achieved by 

decreasing a3. We believe that by removing the constraint 
n(0) = erp, this phenomenon would result in a continuous 
CL-DT structure transformation. In the intervening 
structure, 6(0) would continuously transform from 
6(0) = 7d2 (CL solution) to 6(0) = 0 (DT solution), where 
the defect in the nematic component vanishes. 

To obtain the BP solution we have to introduce an 
anisotropy in the K2 and K3 Frank elastic constants. In our 
case, we have taken a rather extreme limit, in which a2 = 1, 
a3 = 30. If the anisotropy among the constants is then 
decreased, the ~ ( p )  # constant solution characteristic of 
the BP structure, no longer exists. Analogous conclusions 
were reached by Press and Arrott [26], and by Williams 
[27] in their respective studies of nematic profiles in 
cylindrically and spherically shaped cavities. They ob- 
served symmetry breaking in the nematic field reminiscent 
of that in n of the BP structure, when anisotropy between 
Frank nematic elastic constants was introduced. 

4.1.2. Stability 
We first discuss the stability of the DT and CL solutions. 

Transitions between these structures can be induced in a 
number of different ways. In most cases we expect the 
transition to be discontinuous. However, as we have 
already discussed above, a continuous transition is not 
ruled out on symmetry grounds. 

The main difference between the two structures is that 
the CL structure is also singular in the nematic director 
field. This suggests that the energy balance between the 
structures depends on location in the (D, t )  phase diagram, 
shown in figure 1 (a).  If there is a nematic gap intervening 
between the S A  and I phases the paranematic (essentially 
isotropic) phase close to the defect axis of the CL solution 
is energetically costly. In this case, the DT solution with 
nematic core is preferred. The situation changes, however, 
in the region of SA stability, where the nematic phase is less 
favoured than the isotropic phase. In our model, this 
regime corresponds to a temperature within the interval 
[ T M , T , I ]  and the coupling constant D is larger than its 
triple-point value Dtp - 1.28. In this regime, the parane- 
matic core of the CL solution becomes advantageous. 
But before reaching a definite conclusion, it is necessary 
to make a quantitative study of the effect of the coupling 
constant on the core structures. 

The other important properties relevant to core structure 
are the different nematic and smectic elastic properties of 
the material. We first discuss the nematic Frank-elastic 
contributions. In the CL solution the bend deformation is 
dominant, whereas twist deformation dominates in the DT 
solution. A large value of the ratio K2/K3 therefore favours 
the CL director field. We note however the apparent 
paradox that a decreased K3 increases the stability of the 
CL solution, but, as discussed in the previous sub-section 
makes it less likely to exist. The smectic elastic constants 
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896 S. Kralj and T. J. Sluckin 

are also relevant. A large value of yLIy;~ favours the CL 
solution, which has n closer to the smectic layer normal 
a. We have seen in Q 3 that the core of the CL structure in 
smaller than that of the DT structure because the director 
field of the CL structure is more compatible with the 
smectic layer configuration. However, the DT structure 
has lower nematic elastic distortions. The nematic and 
smectic elastic distortions are weighted by constants C ,  
and CZ, defined in equation (3), respectively. Therefore a 
large C,lC, ratio favours the CL solution. To summarize, 
we expect the CL is favoured with respect to the DT 
structure for relatively large ratios of C31Clr K2/K3 and 
ylkpll and in addition for T >  TNI when T <  Tsr. 

We now discuss the stability of the BP structure. First 
we treat the regime where the DT structure is energetically 
more favourable than the CL solution. In this case, we do 
not expect the BP structure to be stable for the following 
reasons: (i) it has an isotropic core; (ii) its existence 
requires K 2 4 K 3  and a low K2 value favours the DT 
solution, and in the BP solution all the Frank nematic 
elastic distortions are present and are of comparable 
magnitude; (iii) the BP structure has an additional strong 
nematic elastic contribution due to the large gradient of the 
nematic order parameter; (iv) the outer core region of 
the DT and BP structure is similar and therefore cannot 
play decisive role. 

The only possibility, therefore, for the existence of the 
BP structure, is the regime where the CL structure is 
favoured. In both the CL and BP structures, the core region 
is essentially isotropic. An important determinant of the 
stability is the structure of the smectic-isotropic interface 
at the edge of this core region. This interface can be 
thought of as a complex structure consisting of a N-I 
interface and an S-N interface. In the S-N interface, vlc/ 
is always perpendicular to the interface. However, in the 
N-I interface, the BP structure has n more radial than the 
CL structure. Thus in the CL structure n is tangential to 
the interface, whereas in the BP case, n has perpendicular 
component. Now the structure of this interface is gov- 
erned, as can be seen in equations (I) ,  by the elastic 
constants kl and k L .  If k- > kll, the director should be 
perpendicular to the interface, favouring the BP solution. 

4.2. Numerical results 
In this sub-section, we examine quantitatively some of 

the hypotheses we have put forward in the previous 
sub-section. The most questionable hypothesis concerns 
the importance of position in the (D ,  t )  phase diagram on 
the core structure. For this reason we study the influence 
of the coupling constant D on the CL and DT structures 
which exist for the conventional parameter values. 

In order to show a global effect of D on the core structure 
we define 

1 300, 

0.3 0.6 0.9 1.2 1.5 

D 
( a )  

0.3 0.6 0.9 1.2 1.5 

D 
@) 

Figure 9. The effect of D on the core structure. Full line: DT 
structure; dashed line: CL structure. Material constants are 
given in figure 4 with the exception that a2 = a3 = 30. 
( a )  As(c5) and Ar(cs) as function of D. (b)  A~(cs)  variation 
with D. 

As(CS) = loz ( d P >  - sb)dP, 

AdCS) = ( d P )  - Eb)dp* f 
Adcs) = (NP) - fib)&. (9) 

Here cs in brackets describes the specific core structure 
(cs = (DT, CL)). The quantities As(cs) and A,(cs) describe 
departures of the nematic and smectic order parameter 
from its bulk value, respectively. The departure of the 
director field from the classical solution is measured by 
AiV(c9). 

The influence of D on the core structure of the DT and 
CL solution is demonstrated in figure 9. We see that at 
higher values of D ,  As(cs) and AE(cs) values are closer. 
This indicates that for a given structure, the profiles s ( p )  
and E ( P )  become similar. The departures of s ( p )  from the 
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0 

t - t ,  

-0 

- 0  

-0 

0 . 3  0 . 6  0 . 9  1.2 1.5 

D 
Figure 10. The stability diagram of the DT and CL solution in 

the ( t ,  D) plane. Dashed line: R = 1; dash-dotted line: 
R = 0.8. The values of remaining constants are as in figure 
4 except that a3 = 30. 

bulk value are increased, whereas those of ~ ( p )  decreased. 
The overall effect is that the core size is reduced. In 
addition, the spatial dependence of the order parameter in 
both structures becomes similar. The dependence of 
AB(CS) also decreases with increased D, indicating that in 
both structures, on average, the director profile is closer to 
the layer normal. This is due to the reduced core size in 
which departures of n from a are significant. Note that for 
large values of D, the paranematic (weakly developed 
nematic) phase exists in both structures. Therefore 
temperature, i.e. position in the (0, t )  phase diagram, is not 
as important in the stability considerations as we had 
expected. 

The stability regions of the CL and DT solution in the 
( t ,  D )  plane are shown in figure 10. At low temperature and 
low values of D ,  the DT structure is stable in agreement 
with our previous discussion. With increased D at constant 
temperature, the elastic components of the two structures 
become increasingly similar. As a result, the free energy 
is determined by the size of the region in which the smectic 
order parameter is reduced. Since the CL solution has a 
narrower core, at a critical value of D = D,(t) the DT 
solution discontinuously transforms into the CL solution. 
Then the graph D,(t) describes the coexistence line of the 
two dislocation structures in the (D,  r )  plane. 

However, if the temperature is then increased, the DT 
structure is re-entered if the value of D is below some 
critical value Dma. The calculations show that in both 
structures the elastic contributions are comparatively less 
decreased than the expelled phase contribution with 
increased t. As a consequence the stability region of the DT 
structure is increased, because the competition among 
elastic terms favours the DT structure. For D > D,, the 
CL solution is stable in the whole temperature range of 
the SA phase existence. 

In figure 10 we show the stability diagram for different 
ratios of R = y ~ ~ / y ~ .  As expected the stability regime of the 
CL structure is increased for increased R. Increasing 
the ratio KdK3 has a similar effect. However, we find that 
the BP structure is not stable in any regime for the chosen 
set of parameters, and we speculate that in fact this 
structure is never stable. 

4.3. Dislocations with higher M 
We now discuss the free energy dependence of the core 

structure on the winding number M .  In particular, we stress 
some differences between the defects we discuss in this 
paper and analogous phenomena in nematic liquid 
crystals, for which there is already a well-developed body 
of theory. 

In a conventional continuum theory, calculating a free 
energy cost AF of a dislocation involves introduction of 
a core radius p c  (also called a cut-off radius). This 
separates the core region, where the continuum approach 
fails, from the surrounding region. The corresponding free 
energy is then A F  = F,, + F,. The quantities F,, 
describe contributions from the core and F, from the 
surrounding region. The elastic term Fe can be calculated 
in the continuum limit. 

It is worthwhile to recall the importance of these free 
energy terms in the case of dislocations in a nematic liquid 
crystal. Nematic dislocation lines are conventionally 
characterized by an index. S .  Clearly there is a close 
analogy between the index S and the winding number M 
describing the screw dislocation. For a dislocation of a 
strength S,  the nematic director orientation changes by 27tS 
on going around the dislocation. The apolar symmetry of 
the nematic orientational order allows S =  (0, ?+, 
2 1, .. .). In a nematic fluid, the Fe contribution is 
dominant. In most cases [4] Fe(S)=S2Fe(1). AS a 
consequence a dislocation of a high index S rarely exists. 
It is energetically more convenient for a high S dislocation 
to dissociate into N dislocations of lower index Si, obeying 
the conservation rule S = X y S i .  

In the case of the screw dislocation, the behaviour is 
essentially different. From the continuum theory, it 
follows [12,13] that Fe = 0. Thus the free energy costs are 
given by AF -- Fcom. 

We now estimate AG, the dimensionless free energy 
cost per unit length AG of the screw dislocations in the case 
D = 0. We write it as a sum of the expelled smectic phase 
contribution Gexp and elastic distortion contribution G, 

AG = Gexp + G,, (10) 

Gexp = 21s (& -I- CZg!? - gbulk)p dp,  (10 a) lorn 
(Clgr  + C 3 g Y ) p  dp .  (10 b) 
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898 S. Kralj and T. J. Sluckin 

Other quantities in equations (10) are given in equations 
( 3 ) ,  (4) and (8). 

To estimate the expelled phase contribution Gexp we 
define the core radius p z  of the S d N  interface and p:  of 
the N/I interface. The latter exist only for the full defect 
core structure. Assuming that the order parameters take 
their bulk values in relevant regions, we obtain 

(1 1) 

The values of the core radii depend on M .  A simple 
asymptotic analysis shows that for the CL solution- 
$ ( M )  = ~ p ; ( l ) ,  p b ( ~ )  = M ~ / ~ ~ L ( ~ ) ,  ~onsequent~y ,  

Gexp = (pb)2&&‘I + (&)2~&”‘~. 

4/3 loc G,xp(M) = M  I ~ N  I ~ P L ( ~ > ) ~  
+ M 2c*lg’,”’1m3 1 N2- ( 1  l a>  

Figure 4 (b) indicates that $ ( M )  = MpE( 1) also applies 
for the DT structure, for which 

( 1  1 b) 

The Gexp(M)  shows a stronger than linear dependence 
on M in both structures. As a consequence 
Gexp(2) > 2Gexp( 1). We see that the expelled phase 
contribution favours the formation of several low M 
dislocations. 

Finally, we have to estimate the elastic contribution Ge, 
which the numerical calculations show plays the dominant 
role. We confine our interest to the DT structure, in which 
the nematic elastic distortions are negligibly small as 
compared to the smectic distortions. For simplicity we set 
y11 = yL, obtaining 

Gexp(M> = M2Glg’s””lnn(P:(l)>2. 

We further approximate spatial dependence of the 
smectic order parameter by ~ ( p  < p:) = Ehp/p:. 
~ ( p  3 p!) = &h. and the H # ( p )  dependence roughly by 
H&”(p  < I )  = M 2 / p 2  and H‘,) (p  2 1 )  = M2/(4p4). The 
latter approximation assumes that 19(p < 1) x p and 
S(p > 1) = tan (Mlp) .  Now we obtain 

We see that the elastic part G, depends only weakly on 
M .  By contrast with Gexp, the elastic contribution prefers 
formation of one high M dislocation rather than several 
dislocations with M =  1. What actually occurs thus 
depends on the relative importance of G, and Gexp. 

This rough estimation is in accordance with our 

numerical results. In the regime studied, we get for the DT 
solution 2AG(M = 1 )  = AG(M = 2) ,  and for the CL 
solution 2AG(M = 1) > AG(M = 2). 

In this context it is also important to mention that in 
practice it turned out to be difficult to get the CL solution 
for M > 1 .  We suspect that this results from the different 
dependence of typical relevant lengths on M .  The 
anisotropy between them is increased with M .  As a 
consequence we fall into the regime where the CL solution 
cannot exist. To get the CL solution for M = 2, a3 must be 
increased, and consequently also the bend penetration 
depth and nematic bend correlation length. 

5. Inherent chirality 
We have emphasized the importance of the screw 

dislocation core structure in the context of understanding 
the TGB phase. This phase may be stable if the liquid 
crystal has some inherent chirality. A typical phase 
diagram would have temperature along one axis and 
inherent chirality along the other. However in practice, the 
inherent chirality is modified by changing the ratio of 
left-handed to right-handed conformers in a mixture of 
conformers with competing chirality. In this case the 
coupling between the chirality and the nematic twist 
deformation field confined to the screw dislocation core 
structure can affect the core structure itself. Indeed, if the 
coupling is strong enough, it may be that this can lead to 
partial phase separation of the conformers. This can in turn 
affect the region in which the TGB phase is stable as a 
function of temperature and concentration. 

In order to check this hypothesis we add a chiral term 
[7] Afchol to equation (1) 

Afchoi - K z q c h o i n  - v x n. (13) 

This contribution forces liquid crystal molecules to twist 
with respect to each other forming a helix of periodicity 
qchol. We further consider the simple case when the 
inherent chirality results from the competition of a mixture 
of otherwise identical left- and right-handed chiral 
molecules whose concentrations are described by rdp) and 
c,(p), respectively. Thus 

qchol = YmaxAC(P), (14) 

where Ac = c1 - c, and q,,, corresponds to a maximal 
value of qchol. 

We must now add an additional contribution Afmlxt to 
equation (1) to take account of the free energy of mixing. 
This takes into account the chemical potentials pl, prof the 
left- and right-handed conformers, respectively, and an 
entropic term of mixing 

Afmlxt = - WI - pfir + kTpocl In el + kTpocr In cr ,  ( 15) 

where p o  describes the particle-density and k is the 
Boltzmann constant. 
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The screw dislocation in smectic A liquid crystals 899 

We shall consider a simple problem in which 
p = p] = pr, and thus Ac = 0 in the homogeneous case. 
We are thus considering a screw dislocation in a non-chiral 
SA fluid which can become locally chiral under the 
influence of twist. 

Taking into account ct + c, = 1, equation (15) simplifies 
to 

1-Ac 1-AC + - ~n (7)). 
2 

We may discard the ,u contribution which only shifts the 
energy scale and treat Ac(p) as an additional variational 
parameter. We use the scaling introduced in 0 2.1, and now 
express the total dimensionless free energy density gtot as 

(16) gtot = g + Agchol + Agmixt, 

Agchol = - Cls2y@2Acn.V X n, 

where 

(160) 

2 

and g is defined by equation (2). In equations (16) we have 
introduced the following new dimensionless constants: 
the twisting power yt = qmaJqo and C4 = p&TN~c2/(b2uo). 
Typical values of these constants are yt - 10 ~ and C4 - 1. 

The minimization of g with respect to Ac yields 

where 

We see that a spatially dependent twist deformation 
field induces spatial variations in A&); for a left hand 
twist n * V X n > 0 and CI > cr. The Ac(p) variation in turn 
affects the director field. The corresponding changes to the 
Euler-Lagrange equations are presented in Appendix A. 
The corrections are of order yt. For a typical case, where 
yt - 10 ~ ’, they play a negligible role. 

In previous sections we have seen that under normal 
circumstances only the DT or CL solutions are stable. 
Since the twist elastic component dominates the DT 
structure, we confine our attention to this case. 

In equations (17), the low IC limit leads to a linear 
response regime in which 

0.5 1 1.5 2 2.5 3 

P I L  
Figure 11. Spatial variation of Ac(p) induced by the DT 

core structure. In the inset, the feedback effect is 
shown. Full line: yt = 0.001; dotted line: yt = 0.05. 
(Cla2yt)l(2C4t) = 1 and other parameters are as in figure 4. 

where the twist is calculated in the absence of the mixing 
free energy terms. In practice this seems to be the regime 
of interest. 

We see that twist director field locally enhances the 
conformer concentration with the same handedness. 
For very high values of yt, there can be a feedback effect, 
in which the handedness favours twist in the relevant 
direction. 

The influence of the DT configuration on Ac(p)  has been 
plotted in figure 1 1. The twist changes direction at the core 
boundary and Ac(p) follows this change. Since the reverse 
twist near the core edge is much more gradual than the 
twist at the core axis, this oscillation is not evident in 
the case shown with the full line. The influence of the 
variation in Ac(p) and 6 ( p )  is shown in the inset. In order 
to see this clearly, we have chosen an exaggerated value 
of yl. We see that inherent twist enhances the concentration 
with the same handedness which in turn increases the 
twist. For yt = 0.05, the twist near the core axis is 
approximately twice that occurring in the case yt = 0.001, 
where the feedback effect is negligible. 

6. Conclusions 
We have studied the core structure of a screw 

dislocation in the SA phase in the frame of the Landau-de 
Gennes theory. Understanding the screw dislocation core 
structure is of particular interest in the context of the recent 
discovery of the TGB phase, in which this dislocation 
plays the crucial role. Previous theoretical investigations 
of the screw dislocation are based either on the analogy 
[ 111 between the screw dislocation and vortex in the 
theory of superconductivity or the elastic [ 121 continuum 
approach. Neither of these studies allows strong nematic 
distortions close to the dislocation axis. In our study we 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
1
3
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



900 S. Kralj and T J.  Sluckin 

relax this constraint, which allows the possibility of spatial 
variation of the nematic orientational order parameter. 

We have found three qualitatively different solutions 
which we name double twist (DT), classical (CL), and 
broken polar (BP) solution. The DT core structure is a 
semi-defect [24], i.e. it is singular only in the smectic phase 
$(r). By contrast, the cores of the CL and DT structures 
form a full defect. At the dislocation axis they are, in 
addition, singular in the nematic director field. The CL and 
DT structures have a ‘conventional’ layer structure in 
which layers rotate in a staircase fashion around the 
dislocation axis. In the BP structure, this layer symmetry 
is broken and the layers escape along the dislocation axis. 
The CL solution has the narrowest core region since its 
structure is the most compatible with the topology of the 
smectic layers. The core structures differ remarkably in the 
Frank elastic nematic component: (i) the nematic twist 
contribution is dominant in DT, (ii) the bend distortion in 
CL, and (iii) all the nematic elastic distortions are involved 
in the BP structure. In the BP solution, the anisotropy of 
the elastic constants that are effective at the VN interface 
also plays an important role. It is also to be stressed the 
6 - &,dependence of all the solutions tends exponentially 
to zero with distance p far from the dislocation axis, in 
accordance with results of Day et al. [ 1 11. 

We have found that, for a sensible set of material 
constants, only the DT or CL solutions can be stabilized. 
In this respect, the coupling constant D between the 
smectic and nematic order parameter is important. The 
coupling D strongly affects the core region. With 
increased D, the DT and CL core structures, apart from 
the director field, become similar and the core size is 
decreased. Our calculations indicate that, in general, the 
DT solution is stable in the low D regime, and the CL 
solution in the high 0 regime. 

We have in addition treated the case in which the liquid 
crystal is composed of a racemic mixture of conformers 
with competing chirality. We show that particularly the 
DT core structure significantly affects the spatial depen- 
dence Ac(p)  of conformer concentrations. A feedback 
effect of induced Ac(p)  variation on the nematic director 
field is negligible for conventional experimental 
conditions. 

It is to be stressed that our approach is only qualitatively 
correct. A detailcd quantitative study would require 
introduction of additional coupling terms between the 
nematic and smectic variational parameters. Indeed, 
comparison with existing [28] and ongoing [29] investi- 
gations of the smectic free energy structure based on a 
microscopic theory suggests that the coupling between 
nematic and smectic components is much more complex. 
However, we believe that these corrections would not 
affect the qualitative picture of our model. It is also to be 
mentioned that the gradient of the phase factor diverges as 

p - > o for all the solutions: I v ~ I  = V‘[I + ( ~ * / p * ) ]  for 
the DT and CL solutions and lV#l= d[l + ( M 2 / p 2  + (ad 
dp)’] for the BP solution. Thus very close to the dislocation 
axis, IV$(p< I ) )  = M / p  for the first two solutions. 
Divergence of IV@l in this limit suggests that higher order 
gradient terms (for example 1n.V - iqo>”$I2 withp > 1 181) 
should be included in the thcory. However the solutions 
begin to differ significantly even at p S 1 (i.e. p/tL = 1 )  
with decreasing p where \V$l 4 1. Therefore we expect 
that these higher order terms would not introduce 
qualitative changes or destabilize some of the solutions. 

Appendix A 
Euler-Lugrange equations 

The dimensionless free energy functional g that we use 
to describe the core structure is given by equations ( 2 ) ,  (4) 
and (8). Let us denote the variational parameters of our 
model by I),, where v1 + q ( p ) ,  ti2 = u ( p ) ,  v 3  = s ( p ) ,  
114 = 6 ( p )  and v 5  = a ( p ) .  In this notation 

g = g [ { 3 $}I. 
The minimization of g gives five coupled Euler- 

Lagrange differential equations 

These are 

- p -  =o,  q ] 
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The screw dislocation in smectic A liquid crystals 90 1 

The quantities H#) ,  Hg) ,  Elk’), Hi2) are defined in 
equations (8c-f). 

It is also possible to examine analytically the limiting 
behaviours of these equations in the cases p + 0, m. 

Because the equations are extremely complex, we 
consider the case of equal elastic constants, i.e. 

ai = KJK1 = R = yL/y1l = 1, i = (11, I, 2, 3). 

In the approximation of equal elastic constant, equa- 
tions (Al) simplify to 

a2s lds 3 
ap2 pap cI ~ + - - - ( ( t  - tn)s - s2 + s3 - 02) 

M 

P 
+ - s in6  sin a + cos 6 ) )  = 0, ( A  2 b) 

a2u lau sin6cosa a 6  
a P 2  P a p  P 

-_  
a P  cos cos 

-+-- 

a@ 
d P  

+ - sin 6 sin a + 

( A 2 d )  
M 

P 
+ - cos 6s ina  - s in6  

a ~ r  a 6  dS dM ($ + z) s in6  + ap ay 2cos (-9) + 2s - - s in6  
a P  a P  

(A2e)  

In $ 5  we introduce chirality into the model. This 
necessitates additional contributions to free energy, given 
by equations (16a, b), and an additional variational 
parameter Ac(p). 

The equation describing the dependence of 

where 

cos a sin (26 )  da - + 
2 a p ‘  

The Ac(p) variation changes equations (A 
Equation (A1 a)  modifies into 

( t  - t ,)S - s2 + s3 - Dr? + 2ClsH;’ 

Ac(p> is 

(A 3) 

1 a, d, e). 

- 2Cla2ytsAcHt = 0, 

equation (A1 d )  into 

and equation (A1 e) into 
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902 The screw dislocation in smectic A liquid crystals 

The equations are solved using the relaxation method 
[23]. In our numerical calculations, because of the strong 
variation of the parameters v,  close to the dislocation axis, 
we use the transformation x = In (plL),  where L describes 
the size of the box used in the calculations. We set L = 150, 
where departures of variational parameters from their bulk 
values are already negligible. 

Appendix B 
Choice of material constants 

The reference set values of the dimensionless constants 
of our model are given in 5 3.2. Here we discuss the criteria 
for these choices. 

The nematic component material constants which 
occur in equations ( 1  a,b) ,  in 5CB take the 
values [30]: ao-40X 106Jm-3, b - 2 X  lO6Jrnp3, 
c - 4 X  106Jm-3, k , -  10-"Jm- '  ( i =  1,2,3), 
Ti$1--307"K. These values are typical of a wide class 
of liquid crystals. For the smectic material constants, 
defined in equations (1  c,  d), we set similar values: EO = ao, 
f i  = 6, y = L', yil= y L  = k,.  We chose as a sensible value for 
our calculations, at D = 0, T& - TZN = 10°K. This choice 
suggests: CI - C? - 100, 
Cz - 1 ,  I, - IS - 50, r - 1-03. The reference set, shown in 
5 3.2, is set slightly away of the values just listed in order 
to get closer to the regime where the CL and BP structures 
can exist. 

a2 - a3 -all - a I - R - 1, 
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